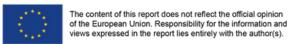






## Soluzioni di micromobilità per il trasporto urbano


## LIFE2M

LONG LIFE TO MICROMOBILITY









### Contesto



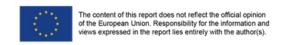
#### EMISSIONI DI GAS SERRA (EU 2019)

Circa
7296
delle emissioni di gas serra dell'UE sono attribuibili al
TRASPORTO TERRESTRE

I VEICOLI PASSEGGERI sono responsabili del 4196 di CO2

#### **OSTACOLI ALLA MICROMOBILITA'**




Scarsa autonomia delle batterie



Infrastrutture limitate

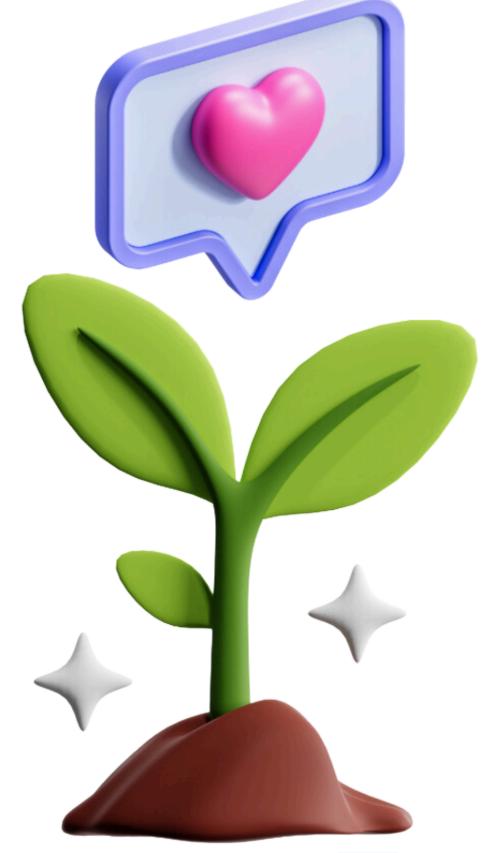


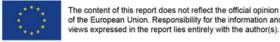
Modelli economici fragili











## Il nostro impegno

LIFE2M è dedicato all'implementazione di tecnologie e soluzioni all'avanguardia per superare le sfide che ostacolano la diffusione della micromobilità come mezzo di trasporto primario in contesti urbani e periurbani.

## I nostri obiettivi

- 1. Sviluppo e dimostrazione di soluzioni tecnologiche innovative
- 2. Promozione e sensibilizzazione sull'uso della micromobilità
- 3. Sviluppo di modelli di business sostenibili











#### Dati del progetto



8 partner



2022-2026



4.364.927,18 € Contributo EU

4 città pilota

#### <u>Impatto atteso</u>

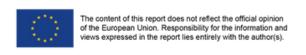


Trasporto

Eco-compatibile
e sostenibile



L'ascesa della micromobilità




Veicoli multimodali

#### **Sfide**

La progettazione di nuovi microveicoli mira a migliorare la riciclabilità, a prolungare la vita dei componenti, a ridurre il consumo di risorse, energia e rifiuti, minimizzando l'uso di materie prime e massimizzando il riciclo dei componenti.

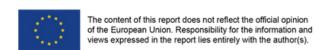
La sicurezza stradale, l'analisi delle esigenze dei potenziali utenti, l'aumento della diffusione di soluzioni di micromobilità e lo sviluppo di modelli di business innovativi per la micromobilità privata, lo sharing e il trasporto merci.









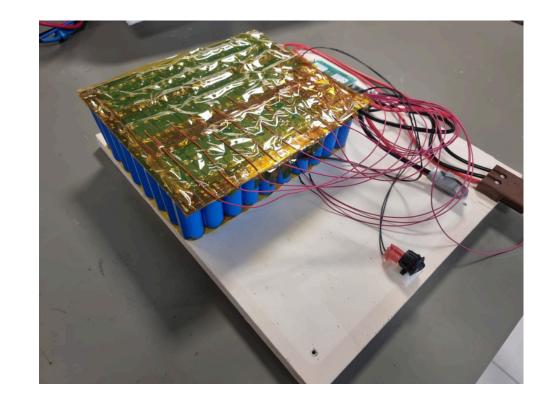

## Punti di forza

I nostri sforzi si sono concentrati sull'ottimizzazione delle soluzioni a batteria per i veicoli di micromobilità. Attraverso test rigorosi, abbiamo identificato i supercondensatori ibridi come l'opzione più adatta, in quanto offrono capacità di ricarica rapida (in media 20 minuti, rispetto alle 3 ore delle batterie al litio), un ciclo di vita prolungato e una tolleranza superiore alla temperatura.

Incorporando un'etica sostenibile, il telaio dei nostri veicoli sarà caratterizzato da una costruzione ibrida di compensato (per le ebike) e di carbonio riciclato non polimerizzato (per gli e-scooter). miscela innovativa Ouesta garantisce un telaio leggero ma robusto, in grado di assorbire le vibrazioni per un maggiore comfort dell'utente, allineandosi al principi della contempo sostenibilità dell'economia е circolare, riducendo al minimo gli sprechi e riutilizzando le risorse.

Le stazioni di ricarica per le batterie sono progettate in modo sostenibile con pannelli solari, rivestiti in vetro e supportati da pellet di plastica e resina riciclati. Questo materiale consente un facile stampaggio e garantisce componenti facilmente reperibili.

Un elemento distintivo è il retrofit delle biciclette muscolari con supercondensatori innovativi, anche in collaborazione con AMAT, una strategia che prolunga la vita utile dei veicoli e riduce costi e rifiuti in un'ottica di economia circolare.






## Studi sulle batterie







Dopo alcune ricerche, abbiamo trovato un fornitore cinese. Sono stati effettuati **test** per capire meglio come le batterie reagiscono.

Abbiamo anche **progettato** e prodotto i *case* per le batterie, per poterle equipaggiare sui veicoli.







## Prototipi

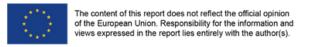






Prototipo di bicicletta in **compensato** e **carbonio riciclato**.




5

Prototipo di e-scooter LEONARDO.

Prototipo di bicicletta muscolare con il **kit di retrofit.** 





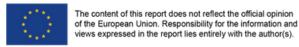








# Stazioni di ricarica



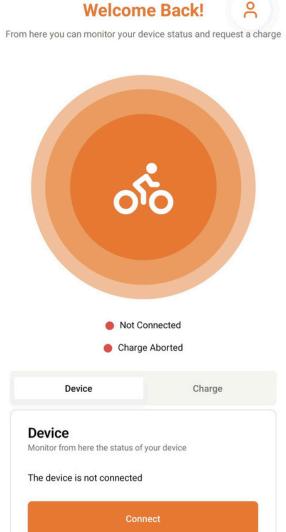



Un prototipo di pensilina di ricarica. Sarà dotata di pannelli fotovoltaici e garantirà il servizio di battery swapping.

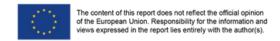
Un prototipo della nostra stazione di ricarica da marciapiede realizzata in bioresina e plastica riciclata. Sarà posizionata lungo i cordoli delle piste ciclabili e garantirà una ricarica veloce (pochi minuti).










Welcome Back! ←

From here you can monitor your device status and request a charge



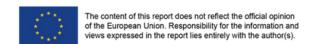
L'app LIFE2M raccoglierà dati su utilizzo, percorsi, ricariche e stato dei veicoli in tempo reale, supportando il monitoraggio e l'ottimizzazione dei piloti.












## PROSSIMI PASSI

Nelle quattro città (Firenze, L'Aquila, Palermo, Bruxelles) si svolgeranno **i** *pilot* **delle tecnologie** sviluppate dal progetto.



Test con **utenti universitari** (L'Aquila, Firenze) **dipendenti AMAT** (Palermo) e **giovani lavoratori** (Bruxelles): valutazione dei veicoli tramite esperienza diretta e questionario finale. I *pilot* forniranno dati su **abitudini d'uso** e **performance dei veicoli**.











## Consorzio









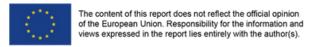




#### Università degli studi di Firenze

Il Dipartimento di Ingegneria Industriale dell'Università degli Studi di Firenze (UNIFI) è coordinatore del progetto (WP1) e della progettazione e sviluppo delle dimostrazioni tecnologiche (WP3.

#### Comune dell'Aquila


E' responsabile della sperimentazione pilota locale, coordinando i test dei veicoli e contribuendo alla raccolta dati e al coinvolgimento degli utenti (WP5).

#### **ESCO Mobility**

Start-up innovativa con sede a Palermo che offre prodotti e soluzioni per la micromobilità urbana. E' responsabile dell'implementazione dei demo (WP5).

#### **EUAbout**

Think tank con sede a Bruxelles, svolge attività di ricerca scientifica e tecnica sulle politiche europee ed è responsabile della comunicazione e divulgazione del progetto (WP4).









## Consorzio





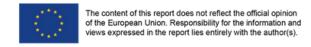




#### **F&N Compositi**

Specializzata nella progettazione e industrializzazione di componenti in materiale composito per i settori aerospaziale, nautico e industriale, partecipa alla progettazione e produzione dei veicoli (WP3).

#### Silidea


Si occupa della progettazione e realizzazione del sistema di connettività a bordo dei veicoli, oltre a supportare l'integrazione dei dispositivi elettronici e la raccolta dati per il monitoraggio delle performance (WP3).

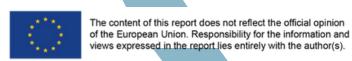
#### **UNEEDIT**

Società di consulenza dedicata alla progettazione e allo sviluppo di soluzioni per il trasporto sostenibile. È leader delle attività di exploitation (WP6).

#### Università degli Studi Guglielmo Marconi

Il Dipartimento di Scienze Ingegneristiche ed Energetiche, specializzato in risparmio energetico nei trasporti e valutazione ambientale, è leader del monitoraggio e della valutazione dei microveicoli (WP2).








# Unisciti a noi per un

# UN FUTURO PIÙ VERDE

Scopri di più https://www.life2m.eu

